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NOMENCLATURE 

dimensionless distance along the wall ; 
dimensionless distance perpendicular to the wall 
dimensionless time ; 
dimensionless fluid velocity components ; 
dimensionless fluid temperature ; 
reference velocity ; 
characteristic length ; 
Pe&t number; 
constant wall temperature; 
constant wall heat flux ; 
fluid thermal conductivity ; 
wall heat flux ; 
dimensionless function related to wall tempera- 
ture, equation (6); 
dimensionless function related to wall heat flux, 
equation (7) ; 
defmed in equation (18); 
defined in equation (19) ; 
defined in equation (21); 
constants (i = 1,2,3); 
exponent in the wedge flow potential velocity ; 
Gamma function ; 
fluid thermal diffusivity ; 
dimensionless boundary-layer thickness; 
delined in equation (36) ; 
defined in equation (35). 

Subscripts 
1, dimensional quantities ; 
W, conditions at the wall. 

Superscripts 
differentiation ; 

* steady state conditions. 

INTRODUCTION 

IN A RBCENT paper [l] Soliman and Chambm presented a 
study of transient heat transfer to incompressible laminar 
boundary layer flows when the Prandtl number is zero. In 
this case the velocity boundary layer vanishes and the po- 
tential flow solution can be assumed throughout the thermal 
layer. By applying successively the von Mises and Fourier 
transformations, the second order partial differential energy 
equation was transformed in a first order equation. Analyti- 
cal solutions when the wall is subjected to a variation in 
temperature or heat flux were obtained by solving the 
resulting equations with the method of characteristics. 

The purpose of this paper is to show that an approximate 
solution of the same problem can be simply obtained using 
the von Kbrman-Pohlhausen integral method. Assuming a 
thermal boundary layer of fmite thickness and a cubic 
temperature profile, the energy equation is transformed in a 
first order equation which is then solved with the method of 
characteristics. Analytical solutions are obtained for arbi- 
trary potential flows and variations in wall temperature and 
heat flux. A comparison with SolimanChambrt solution 
is presented for the case of wedge flows. 

ANALYSIS 
With the usual assumptions of negligible axial conduction 

and viscous dissipation, the energy equation for plane 
incompressible laminar boundary layer flows can be written : 

aT, aT, aT, a2Tl 

ah 1 ah ah 
--+u,a?c+v’-=K2. 

In terms of the dimensionless variables : 

t,u, 
t = T 

Xl 
x = -, 

L 
y= JPe ?‘, ~~5, 

Vl 
vr- 

L u u 
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T = F for variation in wall temperature and $(r, x, a) = 0. (13) 
0 

T,kJPe 
T = ~--- for variation in wall heat flux, 

qoL 

equation (1) becomes : 

Inserting expression (9) in equation (8) and performing the 
integrations, the following equation works out: 

as2 
dt + u(x) f; = 8 - 214 ‘(x) 6’ - 24x) $;$ (14) 

(2) 
with the initial and boundary conditions : 

6(0, x) = 0 (15) 

The initial and boundary conditions are : 

T(0, x, y) = 0 x>o, y>o 

T(t, 0, y) = 0 t>o, y>o 

T(t, x, co) = 0 t>o, x>o 

and 

T(t, x, 0) = f(x) t > 0, x > 0 

qt, 0) = 0. (16) 
(3) A closed form analytical solution of this equation can be 

(4) obtained using the method of characteristics. The charac- 
teristic system associated with equation (14) is [3] : 

(5) 
dt= ud;= -ALIT .._.ds’___-__, 

8 - 26’~ (x) - 2S2u (x) f’(x)/f(x) (17) 

(6) The equation of the characteristic lines is : 
or 

dT 
,~(t,x,o) =Y(x) t > 0, x > 0 (7) 

j(x) and Y(x) are two dimensionless functions of x that 
describe the prescribed wall temperature and heat flux 
distributions. 

Assuming a finite thermal boundary layer of dimensionless 
thickness 6, equation (2) can be integrated with respect to 
y between 0 and 6, yielding : 

where use has been made of the incompressible continuity 
equation. 

With the assumption ofzero Prandtl number. the velocity u 
appearing in equation (8) is the potential flow solution and 
therefore depends upon the coordinate x only. 

SOLUTION FOR A WALL 
TEMPERATURE VARIATION 

According to von Karman-Pohlhausen integral method 
[2], a cubic temperature profile is chosen: 

T = f(x) 

satisfying the boundary conditions : 

T(t, x, 0) = f(x) 

T(t, x, 6) = 0 

aT 
ay (t, x, 6) = 0 

t= x dtl J - + c, = X(x) + c, 
u (fl) (18) 

0 

or, except for an arbitrary constant: 

.Y - F(t) = c, (19 

in the assumption that the expression t = X(x) of the dividing 
characteristic is univocally invertible. 

Equating the second and third term of equation (17) and 
integrating, yields : 

QPU 2(X)f2(X) - f$(x)fZ(.x) 

+ 2 [ f’(v) f(v) 4(tl)dtl = ~3 (20) 

where : 

4W = [ u (4 dv. x 2 0. (21) 

Applying the conditions (15) and (16) the following two 
expressions for the solution of equation (17) work out : 

6 = -- Yi! 
f(x) u (4 { 

4(x) j-(X) - f#J[x - F(t)] f[x - F(t)] 

I 4 

-2 
s 

t < X(x) (22) 
x - F(I) 

t 2 X(x). (23) 

Equation (22) is time-dependent and therefore describes the 
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transient part of the process, whereas equation (23) describes 
the steady state. 

Inserting the above relationships in expression (9), the 
dimensionless fluid temperature distribution can be obtained. 
In particular, the dimensional wall heat flux is given by : 

= 3 k(JPe)T, f(x) 
27-b’ 

(24) 

VARIATION IN WALL HEAT FLUX 
Following the previous procedure, the chosen temperature 

profile is : 

T = y(x)6 > . (25) 

The resulting partial differential equation becomes : 

as* 
x + .(l,;; = 12 - s’y(x);+ Slu’(IE) (26) 

the solution of which is again given by two expressions : 

6 = __24__ ._ 
JW) UWI 

YW - r[x - m Lx - WI - J Y'Wtl 
x- FV, i 

t c X(x) 

The dimensional wall temperature is : 

qoL qoL 
T,,, = FJx Tk x, 0) = 3k  JPe ~(4 5. 

(27) 

(LB) 

(29) 

COMPARISON WITH SOLIMAN-CHAMBRi? 
SOLUTION 

In order to compare the obtained solutions with those 
given in [l], the previous analysis has been applied to the 
problem of wedge flows. The dimensionless potential 
velocity is [2] : 

u(x) = P; OSm<l, x30 (30) 

The functions X(x) and F(t) become: 

X(x) = xl-+/(1 - m) x30 (31) 

F(t) = [t(l - m)] l/(1 -m) t 3 0. (32) 

The case m = 1 has been excluded since the integral in 
equation (18) diverges at the lower limit. The prescribed 
wall temperature and heat flux are simply assumed as 
spatially uniform, namely : 

f(x) = y(x) = 1. (33) 

In the case of a temperature variation, the ratio of the tran- 
sient wall heat flux to its steady state value is obtained by 
equations (22x24): 

41.w/4T,w = l/(1 - am+‘)* T $ l/(1 - m) 
(34) 

4~.wi4~,w = 1 7 2 l/(1 - m) 

where : 

c( = 1 - [r(l - m)]l/cl-m) (35) 

r = tu(x)/x = t.3”-’ (36) 

and the steady state wall heat flux is given by equations 
(23) and (24) 

4:,v = $jk+ [Pe(m + l)]+/ ?/‘m-1”2. (37) 

For a variation in the wall heat flux, the ratio of the transient 
wall temperature to its steady state value is given by equations 
(27H29) : 

T,,,;T;,, = (1 - m)tclmrn) $(1-m) T C Ml - 4 (38) 

T,,,F:,, = 1 7 > l/(1 - m) 

where T:,, is given by equations (28) and (29): 

(39) 

The comparison between the obtained solutions and 
Soliman-Chambrt [l] exact ones is straightforward for the 
case ofa variation in the wall temperature. The two solutions 
are almost identical, the only difference being the numerical 
factor 3/4,/2 instead of 114, in the steady state flux expres- 
sion. For the variation in the heat flux, the comparison is 
shown in Fig. 1. SolimanChambrb solution (full line) is 

FIG. 1. 
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plotted together with the present one (dashed line) for 

m = 0, i, f, $. As regard to the steady state value, the numeri- 

cal factor 2(J3)/3 appears instead of 

CONCLUSIONS 

The integral method has been applied to the study of 

transient heat transfer to boundary layer flows with zero 

Prandtl number. Analytical solutions have been obtained 

in a very simple way for arbitrary potential flows and have 

been compared with Soliman<hambr6 [l] exact solution 

in the particular case of wedge flows. The overall accuracy 

of the obtained solution seems satisfactory and gives further 

confidence in the possibility of application of the integral 

method to this kind of time-dependent problem. (A similar 

conclusion was drawn by Stewartson [4] in the problem of 

the impulsive motion of a flat plate in a viscous fluid.) 
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NOMENCLATURE and 

departure from freezing temperature ; 
normalized temperature (B/B,): 

distance from fixed cooled surface ; 
normalized distance (X/X,) ; 
time ; 
normalized time (t/t,) ; 
representative temperature difference; 

final layer thickness or “active zone” depth ; 
characteristic time (pLXf!KB, or periodic time); 

normalized ice thickness ; 
specific heat at constant pressure; 

latent heat of fusion : 
ice density ; 

subject to suitable initial and boundary conditions: one of 

the boundary conditions has since been found to be in- 

correct. 

A regular perturbation expansion in Ste was then used 

for both the temperature 4(x, T, Ste) and interface location 

fl(z. Ste). For two particular surface temperature variations 

(sinusoidal and power law) the interface expressions took 

particular forms which, it has since been noticed. are each 

of the more general form 

thermal conductivity : 
Stefan number (C,B,/L). 

where 4’(r) is the particular surface temperature variation. 

This is clearly a very simple and convenient result and 

therefore it is worthwhile examining the problem to see 

whether the result applies to any other surface temperature 

variations and to ascertain the extent of the error incurred 

through the use of an incorrect boundary condition. 

IN A PREVIOIJS paper [l], a perturbation solution was 
developed for the formation of an ice layer at the edge of a 

semi-infinite domain of water, initially at the freezing point. 

and subject to a prescribed variation in surface temperature. 

In this form the problem was posed as the solution of the 

equations 

(1) 

(2) 

B(T. Ste) = /I(T, 0) 
[ 

1 + T 4’(T) + O(Ste? 1 

Taking 

4(X, t, Ste) = f Step q+, t), 
Al=0 

(3) 


